
P.Kanaka Sirisha.et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 2) April 2016, pp.42-45

 www.ijera.com 42|P a g e

Verilog Implementation of 32-Bit CISC Processor

P.Kanaka Sirisha*,P.A.V.Sai Sindhuja**,P.Prasanthi**,K.Kiran****,

K.Ankala Rao*****
*(Department of electronics and communication engineering,Bapatla engineering college, Bapatla-522101, **(

Department of electronics and communication engineering,Bapatla engineering college, Bapatla-522101, ***(

Department of electronics and communication engineering,Bapatla engineering college, Bapatla-522101, ****(

Department of electronics and communication engineering,Bapatla engineering college, Bapatla-522101,

*****(Department of electronics and communication engineering,Bapatla engineering college, Bapatla-

522101,

ABSTRACT
The Project deals with the design of the 32-Bit CISC Processor and modeling of its components using Verilog

language. The Entire Processor uses 32-Bit bus to deal with all the registers and the memories. This Processor

implements various arithmetic, logical, Data Transfer operations etc., using variable length instructions, which

is the core property of the CISC Architecture. The Processor also supports various addressing modes to perform

a 32-Bit instruction. Our Processor uses Harvard Architecture (i.e., to have a separate program and data

memory) and hence has different buses to negotiate with the Program Memory and Data Memory individually.

This feature enhances the speed of our processor. Hence it has two different Program Counters to point to the

memory locations of the Program Memory and Data Memory.Our processor has ‘Instruction Queuing’ which

enables it to save the time needed to fetch the instruction and hence increases the speed of operation. ‘Interrupt

Service Routine’ is provided in our Processor to make it address the Interrupts.

Keywords : PC-Program counter,DM-Data memory,S_BUS-system bus,ACC-Acumulator,MUX-

Multiplexer,DEMUX-Demultiplexer,IR-Instruction register

I. INTRODUCTION
From the architecture point of view, the

microprocessor chips can be classified into two

categories: Complex Instruction Set Computers

(CISC) and Reduce Instruction Set Computers

(RISC). In either case, the objective is to improve

system performance.

 ‘CISC’ stands for ‘Complex Instruction

Set Computer’. CISC Computers are based on a

complex Instruction set in which instructions are

executed by microcode. Microcode allows

developers to change hardware designs and still

maintain backward compatibility with instructions

for earlier computers by changing only the

microcode, thus make a complex instruction set

possible and flexible. Although CISC designs allow

a lot of hardware flexibility, the supporting of

microcode slows microprocessor performance

because of the number of operations that must be

performed to execute each CISC instruction. A

CISC instruction set typically includes many

instructions with different sizes and execution

cycles, which makes CISC instructions impossible

to pipeline.

 Properties:-

 CISC processor has most of the following

properties:-

 Richer instruction set, some simple, some very

complex

 Instructions generally take more than 1 clock

cycle to execute

 Instructions of a variable size

 Instructions interface with memory in multiple

mechanisms with complex addressing modes

 No pipelining

 Upward compatibility within a family

 Microcode control

 Work well with simpler compiler

II. HARVARD ARCHITECTURE:
The harvard architecture is a computer

architecture with physically separate storage and

signal path ways instruction and data.The term

originated from the harvard mark 1 relay-based

computer which stored instructions on punched

tape(24bit wide)and data in electromechanical

counters.These early machines had data storage

entirely contained within the central processing

unit,and provided no access to the instruction

storage as data.programs needed to be loaded by an

operator;the processor could not initialise itself.

Today most processors impleement such

separate signal pathways for performance reasons

,but actually implement a modified harvard

architecture,so they can support tasks like loading a

RESEARCH ARTICLE OPEN ACCESS

P.Kanaka Sirisha.et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 2) April 2016, pp.42-45

 www.ijera.com 43|P a g e

program from disk storage as data and then

executing it.FIGURES

Figure 1:-Instruction Memory Fetching Unit

Figure 2:- Data Memory Fetching Unit

Figure 3:- Arithmetic and Logical Unit

Figure 4:Register file

Figure 5:- Control Unit

Fig 1:

At First, the address in the ‘Program Counter 1

(PC1)’ is either loaded directly from the system bus

or incremented from its previous value. The

Memory address in the ‘PC’ is loaded out. Based

on the selection pin of the ‘DeMUX’, the memory

address is loaded either into the ‘Instruction

Memory address (IM_ADD) bus’ (in the general

case) or to the ‘System Bus’ (in the case of

subroutine). The data in the ‘Instruction Memory’

pointed by the address is fetched to the ‘Instruction

Queue (IQ)’ by the ‘Instruction Memory OUT

(IM_OUT) Bus’.

The ‘IQ’ is then loaded by selecting the

‘Load’ Pin. The data in the ‘IR1’ is then loaded

into the MUX and the output to the bus is then

again decided by the ‘Enable MUX’ and ‘Select

MUX’ signals. The output to the ‘System Bus’is

either the entire data in IR1 (in the case of 32-bit

memory location) or zero-padded 24-bit (in the

case of immediate value). The MSB 8 bits of IR1

are loaded as input ‘Opcode’ to the control Unit

(CU).

Fig 2:

The System Bus is connected to the ‘Program

Counter 2 (PC2)’, ‘Stack Pointer (SP)’ and directly

to the ‘Data Memory (DM)’. Based on the

respective enable signals, the data in the System

Bus enters into PC2 (in the case of loading the PC2

with DM address) or SP (in the case of subroutine)

or directly to the DM (in the case of writing to the

DM).Hence in any case, the MUX2 present there,

provides the address of DM that arrives from either

PC2 or SP. In the case of write operation, the

address is derived from the PC2 and data to be

written is present in the System Bus that is directly

connected to the DM. In the case of ‘Read’

operation, the data in the DM pointed by the

address from the PC2 is loaded in to the Data

Memory out (DM_OUT) Bus. On the enabling of

‘Load’ signal of the Data Register (DR), the data in

the DM_OUT bus enters into the DR. The data in

P.Kanaka Sirisha.et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 2) April 2016, pp.42-45

 www.ijera.com 44|P a g e

the DR is always readily available to the system

bus that connects various blocks of the processor.

Fig 3:

As the architecture indicates, the output result of

the ALU is again stored in the Accumulator (Acc)

itself or transferred to the System Bus based on the

Selection pin of the DeMUX2. The MUX present

selects the input to the Acc, either the data in the

System Bus or the ALU output and the data enters

‘Acc’ only when the ‘Load Acc’ is enabled. A

DeMUX1 is then present in order to share the data

in the Acc to either the input ‘A’ of the ALU or to

the System Bus as the output.The input ‘B’ to the

ALU is also provided by the System Bus itself.

When the input enters as ‘B’ from the System Bus,

the Input ‘A’ doesn’t change since the ‘Load Acc’

is disabled. Hence the operation is performed based

on the ALU Opcode provided by the Control Unit,

and the result of the Operation is stored again in the

‘Acc’ itself. The data in the ‘Acc’ can be used by

moving it into the System Bus by selecting the

appropriate DeMUX signal.

Fig 4:

The Register File (RF) of the CISC32 Processor

contains 4 General Purpose Registers each called

Apple (R1), IBM (R2), INTEL (R3) and

MICROSOFT (R4). The System Bus attached to

the RF is used by the processor to both read and

write the RF. Operations ‘Read’ and ‘Write’

depend upon the ‘Read Enable (R_E)’ and ‘Write

Enable (W_E)’ Signals attached to the Register

File.

Fig 5:

The control Unit (CU) block consists of

two units named Decoding Unit (DU) and Timing

Unit (TU). The opcode that comes out of the FU1

acts as the input to the CU. The CU then enables

the necessary signals in a sequential manner to

perform the operation indicated by the opcode.

‘Heart’ to the Human Body is what ‘CU’ to the

program.

III. CISC INSTRUCTION FORMAT
1. Opcode:- It occupies 8 bits out of 32 bits,

which can accommodate a maximum of 2
8

(256) instructions.

2. The processor has 4 user accessible registers

and can be addressed by 2 bits, hence in case

of ‘register to register’ addressing; the entire

operation can be installed in a single

instruction.

3. In case ‘memory memory’ or‘memory to

register’ operations 2 to words

IV. EXECUTION CYCLE
FETCH INSTRUCTION: -At First, the instruction

will be fetched from the program memory through

the bus allocated to it. The instruction is then stored

in an instruction queue and there on to be passed to

the Control Unit.

Decode: -The instruction will be decoded in the

decode unit of control unit and the necessary enable

and disable signals will be sent to the necessary

blocks (Micro programmed Control Unit) using the

timing unit. The operands, if present, are placed on

to the Internal Data Bus for the use of the Registers

or ALU.

Fetch Operands: -If the opcode requests fetching

of operands from data memory, the memory

location will be placed on to the internal bus so that

the location will be copied on to the Data Memory

PC and then to the bus attached to the Data

Memory. The Operand will be fetched and placed

on the Internal Data Bus making it available for the

ALU or the Register Bank as in the previous case.

Execute: -The processor then performs the

operation indicated by the opcode.

Store Output Operand: -It then stores the result in

the Accumulator (By Default; if it is an ALU

Operation). Thus the ‘Execution Cycle’ is

completed.

V. CONCLUSIONS
• The CISC32 Processor is implemented using

Verilog Language.

• The Processor is designed using Harvard

Architecture and hence uses two Different

Program Counters are used in CISC32

Processor to point the Program Memory and

Data Memory Individually.

• The speed of the processor is 1 MHz

• The Accumulator Type Instruction Set

Architecture (ISA) is used in the CISC32

Processor (Where the result is stored in Acc

itself).

• Up to 256 different instructions are

compatible.

• 3 types of addressing modes are used in the

processor.

• 5 General Purpose Registers are used

(including Accumulator).

• Instruction Queuing is also made available

which slightly increases the speed of the

processor Operations.

REFERENCES
[1]. Computer Organization and Architecture’

by Prof. J. K. Deka, IIT- Guwahati

[2]. Computer Organization and Architecture’

by William Stallings

P.Kanaka Sirisha.et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 2) April 2016, pp.42-45

 www.ijera.com 45|P a g e

[3]. Hasan Krad and Aws Yousif Al-Taie, ‘A

New Trend for CISC and RISC

Architectures’, IEEE.

[4]. A journal on 8 Bit RISC processor using

verilog HDL

